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Abstract. In this paper we present a theoretical study about the influence of the magneto-crystalline
anisotropy on the magnetic properties of magnetic metallic trilayers Fe/Cr/Fe (110). The theory is based
on a realistic phenomenological model which includes the following contributions to the free magnetic
energy: Zeeman, cubic and uniaxial anisotropy, as well as bilinear and biquadratic exchange energies. The
experimental parameters used here are based on experimental data known from the literature. We present
numerical results of magnetization versus external applied field to illustrate the behavior of the system.
Our numerical results show that in some situations the saturation field can not be correctly determined
by magnetoresistance measures.

PACS. 75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures) –
75.30.Gw Magnetic anisotropy – 71.70.Gm Exchange interactions – 75.75.+a Magnetic properties
of nanostructures

1 Introduction

Since the last decade, the study of magnetic multilayers
has been a field of intense activity in physics, from both
the theoretical and experimental point of view. In partic-
ular, the properties of magnetic interactions between fer-
romagnetic films separated by nonmagnetic spacers have
been widely investigated (for reviews see [1,2], and the
references there in).

The magnetic state of a ferromagnet can affect the
electrical transport properties of the material in several
ways. For example, the relative orientation of the mag-
netic moments in magnetic multilayers underlies the phe-
nomenon of giant magnetoresistance (GMR) [3]. The in-
verse effect, in which a large electrical current density can
perturb the magnetic state of a multilayer has been pre-
dicted [4] and observed experimentally with lithograph-
ically patterned samples [5]. Some of these observations
were taken as indirect evidence for current-induced excita-
tion of spin waves, and indeed, recently the high-frequency
behavior and partial phase coherence of such current-
induced excitations was probed, by externally irradiating
a point contact with microwaves, supporting the feasibility
of a kind of spin-wave maser [6]. Besides, the possibility of
applying the giant magnetoresistance effect in information
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storage technology [7] as well as in mixed magnetic mul-
tilayers used for tailoring new shapes of GMR curves [8],
makes this subject an attractive object of applied research.

Magnetic multilayers which incorporate ultrathin fer-
romagnetic films, are physical realizations of classical, one
dimensional spin systems, with spins coupled via exchange
mediated by spacer layers subject to anisotropy. Such sys-
tems can undergo a rich range of phase transitions, in
response to an external magnetic field, or changes in tem-
perature. Since interfilm exchange is weak, modest mag-
netic fields can induce spin reorientation phase transitions.
We thus have a new and diverse class of magnetic mate-
rials, with phase diagrams subject to design (see [9] for a
review). Very recently, the interface magneto-crystalline
anisotropy energy (MAE) in Fe/CeH2 multilayers had
been site and element-specifically isolated by combining
soft X-ray resonant magnetic scattering with soft X-ray
standing waves. Using the different temperature evolu-
tions of both materials it was demonstrated that the tran-
sition metal interface MAE dominates the spin reorienta-
tion, while the rare-earth contribution becomes significant
only at much lower temperatures [10].

As regards the magnetic interactions, the existence
of high-order exchange coupling has been a subject
of interest for a long time. Exchange anisotropy oc-
curs at the interface between an antiferromagnetic layer
and a ferromagnetic layer, and results in a ferromagnet



528 The European Physical Journal B

hysteresis loop displaced along the field axis. The temper-
ature dependence of interlayer exchange coupling can be
studied theoretically within an ab initio approach based
on a Green function technique [11]. Domain disorder in
exchange-biased magnetic multilayers was recently inves-
tigated using off-specular neutron reflectometry [12]

The interest in magnetic metallic multilayers can be
justified by the discovery of a number of new physical
properties in these systems, such as the antiferromag-
netic bilinear coupling [13], the oscillatory behavior of the
bilinear coupling [14] and the biquadratic coupling [15],
among others. The understanding of these new proper-
ties became an exciting challenge from the point of view
of basic research. Interactions such as biquadratic cou-
pling, three-site four-spin interaction and four-site four-
spin interaction have been discussed by many investiga-
tors. In particular, the practical interest in biquadratic
interaction started when it had to be added to the
usual bilinear Heisenberg exchange to explain some mag-
netic properties of materials, such as MnAs, TbSb, MnO,
α-MnS, EuSe, rare-earth vanadates, arsenates, and phos-
phates [16]. Furthermore, it was shown that in some
materials a biquadratic-like interaction is dominant (see
e.g. [16]). More recently, a strong biquadratic coupling has
been found in magnetic metallic multilayers [17] and it is
responsible for very interesting effects on the properties
of the magnetoresistance and magnetization curves [18].
Some theoretical explanations have been proposed for the
origin of the biquadratic term (see e.g. [19]). In partic-
ular, for the magnetic metallic multilayers, the origin of
the biquadratic term was discussed by Edwards et al. [20]
and Slonczewski [21] in the theory associated with higher
harmonics in the oscillatory exchange coupling.

As regards the crystallographic orientations, with the
advances in experimental growth techniques multilay-
ers of impressive quality and different crystallographic
growth directions are now easily synthesized, for instance
by means of “sputtering” and Molecular Beam Epitaxy
(MBE). In fact, it is now possible to “tailor” magnetic
multilayers whose macroscopic properties are subject to
design and control by varying the thickness and composi-
tion of the layers. Thus, magnetic metallic multilayers pre-
senting very specific properties can be experimentally real-
ized. However, despite the above cited advances, the most
part of the research performed about magnetic metallic
multilayers has been focused on (100) structures. There-
fore, there is a lack of studies considering magnetic metal-
lic multilayers grown in different crystallographic orienta-
tions, for example the (110) direction.

The purpose of this article is to investigate the influ-
ence of the uniaxial and cubic anisotropy, due to the (110)
growth direction, on the magnetic properties of magnetic
metallic multilayers. In particular, we are interested in
Fe/Cr/Fe (110) trilayers presenting both bilinear and bi-
quadratic exchange couplings. The paper is organized as
follows. In Section 2 we present the physical model for a
single film, including the crystallographic orientation con-
sidered here, and we make comparisons with previous ex-
perimental results. Later, we extend the free magnetic en-

ergy (including Zeeman, anisotropy and exchange terms)
for the trilayer system. Section 3 is devoted to the discus-
sion of the effects of the biquadratic exchange coupling,
relative to the bilinear one, and the magneto-crystalline
anisotropy on the magnetization curves. Finally, our find-
ings are summarized in Section 4.

2 General theory

2.1 Single film

The geometry and the coordinate system employed here
and its relation to the crystalline axis are shown in Fig-
ure 1. At first, we consider just a magnetic single-crystal
film with thickness d having cubic lattice structure. The
coordinate system is chosen so that the x′y′ plane is paral-
lel to the film surface, with the x′ and y′ axes along [110]
and [001] crystal directions, respectively. We study the
situation where the external static magnetic field �H is ap-
plied in the plane of the film at an arbitrary angle θH with
respect to the [110] direction. In this case, the equilibrium
direction of the magnetization �M is also in the x′y′ plane,
characterized by the angle θ. As is well known, the static
properties result from the competition of several magnetic
terms which compose the total magnetic free energy of the
system. In general, each term tries to align the magnetiza-
tion of the film along different directions. Therefore, our
initial goal is to determine the equilibrium values of θ as
a function of the external magnetic field �H (for each par-
ticular value of θH). The equilibrium direction of �M is
determined by the minima of the total magnetic free en-
ergy. We consider, for a single film, a magnetic free energy
per unit area with three basic contributions, i.e.,

ET = Ez + Eca + Eua. (1)

Here Ez is the Zeeman energy (between the ferromag-
netic film and the external applied field), and Eca and Eua

are the cubic and uniaxial crystalline anisotropy energies
(which we assume present in the ferromagnetic film). We
should remark that the presence of the uniaxial anisotropy
in the free magnetic energy is justified because it has been
observed in mono-crystal films (110) [22].

The explicit form of the free magnetic energy per unit
area can be written as,

ET = −d �M · �H +
dKca

|M |4
(
M2

XM2
Y + M2

XM2
Z + M2

Y M2
Z

)

− dKua

|M |2 ( �M · �θu)2. (2)

In the above equation, �H is the external magnetic field
which is applied in the film plane, d is the thickness of
the Fe film, �M is the magnetization of the Fe film, Kca

is the cubic anisotropy constant and Kua is the uniaxial
anisotropy constant.
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Fig. 1. Schematic representation of the trilayer structure and coordinate system considered in this work.

Equation (2), after some calculation, takes the form

ET = −dMH cos(θ − θH)

+ (1/4)dKca

[
cos4(θ) + sin2(2θ)

]
− dKua cos2(θ − θu),

(3)

where θ is the angular orientation of the magnetization of
the Fe film, θu is the uniaxial anisotropy direction and θH

is the angular orientation of the magnetic field. In order
to use the experimental information of reference [22] from
this point onwards we consider θu = 90◦, which means
that the uniaxial anisotropy renders the [001] direction an
easy direction. It is interesting to note that the combina-
tion of Kca and Kua furnishes a symmetry to the system
so that there are an easy axis (θ = 90◦), an intermediate
axis (θ = 0◦) and a hard axis (θ = 35◦).

It is usual to write the total free magnetic energy in
terms of experimental parameters, or effective fields, for
each magnetic term such as,

Hca = 2Kca/MS (4)

and
Hua = 2Kua/MS , (5)

with MS being the saturation magnetization. In this way,
we can obtain a final expression for the free magnetic en-
ergy per unit area as

(ET /dMS) = −H cos(θ − θH) + (1/8)Hca

[
cos4(θ)

+ sin2(2θ)
]
− (1/2)Hua cos2(θ − θu). (6)

Once the values of θ that minimize the free magnetic en-
ergy are found, we obtain the normalized magnetization

Fig. 2. Magnetization curves for a single film with θH = 0◦,
35◦ and 90◦.

component in the field direction from

M(H)
MS

=
M cos(θ − θH)

M1
. (7)

In Figure 2 we have plotted the magnetization versus
the external magnetic field for a single film, considering
three values of θH , namely θH = 0◦, 35◦ and 90◦. These
orientations correspond to an intermediate axis, a hard
axis and an easy axis, respectively. In our numerical calcu-
lations we consider Hac = Hua = 0.48 kOe. These are ex-
perimental values which can be found from the literature
(see for example [22]). When the field is applied at θH = 0◦
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there are two phases: the canted phase and the aligned
one. For zero field, the magnetization is along the [001]
direction and, as the field increases, it rotates towards
the field direction until the critical field H ∼ 0.38 kOe
is reached, for which a first order phase transition oc-
curs and the aligned phase emerges. For θH = 35◦ the
canted and aligned phases are again present. However,
the system goes from the canted phase to the aligned one
through a second order phase transition, i.e., as the field
is increased the magnetization of the film continuously ro-
tates towards the field direction. The saturation field is
around H ∼ 1.2 kOe. Finally, when the field is applied
at θH = 90◦, which corresponds to an easy axis, only the
aligned phase is present. We should remark that our the-
oretical result, depicted in Figure 2, is in excellent agree-
ment with the experimental result of Prinz et al. [22] (its
Fig. 8) who have grown Fe films on GaAs substrate for
the first time by means of MBE.

2.2 Trilayer system

For the trilayer system the geometry is very similar to the
single film case one (see Fig. 1). We consider two magnetic
single-crystal films, 1 and 2, having cubic lattice structure.
They have thicknesses d1 = d2 = d and are separated by
a nonmagnetic spacer layer with thickness s. As before,
we study the situation where the external static magnetic
field �H is applied in the plane of the films, at an arbitrary
angle θH with respect to the [110] direction. Therefore,
the equilibrium directions of the magnetization of the two
films, �M1 and �M2, are also in the x′y′ plane, characterized
by the angles θ1 and θ2. Thus, we have to determine the
equilibrium values of θ1 and θ2 as a function of the external
applied field �H . In a similar way to the single film case,
the equilibrium directions of �M1 and �M2 are determined
by the minima of the total magnetic free energy. However,
the magnetic free energy per unit area is composed now by
five contributions, the three previous contributions listed
in equation (1) plus the exchange energies associated to
the bilinear and biquadratic exchange couplings, i.e.,

ET = Ez + Eca + Eua + Ebl + Ebq. (8)

Here Ebl and Ebq are the bilinear and the biquadratic
exchange coupling energies (between the ferromagnetic
films), respectively.

The form of the free magnetic energy is easily extended
for two coupled films yielding

ET = −
n=2∑
i=1

di
�Mi · �H +

n=2∑
i=1

diKca

|Mi|4
(
M2

iXM2
iY

+ M2
iXM2

iZ + M2
iY M2

iZ

)
−

n=2∑
i=1

diKua

|Mi|2
( �Mi · �θu)2

− Jbl

�M1 · �M2

| �M1|| �M2|
+ Jbq

( �M1 · �M2)2

| �M1|2| �M2|2
, (9)

which can be written as

ET /dMS = −
n=2∑
i=1

H cos(θi − θH) +
n=2∑
i=1

(1/8)Hca

[
cos4(θi)

+ sin2(2θi)
]
−

n=2∑
i=1

(1/2)Huacos2(θi − θu)

− Hbl cos(θ1 − θ2) + Hbqcos2(θ1 − θ2). (10)

Here we have used

Hbl = Jbl/dMS, (11)

as the bilinear exchange coupling field, which favors anti-
ferromagnetic alignment when negative and ferromagnetic
alignment when positive, and

Hbq = Jbq/dMS, (12)

as the biquadratic exchange coupling field, which is exper-
imentally found to be positive and favors a non-collinear
alignment (90◦) between two adjacent magnetizations.

3 Numerical results

In this section we present the numerical results obtained
for the magnetization curves of the trilayer system. In
all situations, as before, we have considered the cubic
anisotropy effective field equal to the uniaxial anisotropy
one, i.e., Hca = Hua = 0.48 kOe, as well as θu = 90◦. In
our calculations we have used three sets of experimental
values for the bilinear and biquadratic exchange couplings,
namely:

(i) the first one with Hbl = −1.0 kOe and Hbq = 0.1 kOe;
(ii) the second one with Hbl = −0.15 kOe and Hbq =

0.05 kOe;
(iii) the third one with Hbl = −0.05 kOe and Hbq =

0.05 kOe.

These experimental sets are known from the literature [17]
and they are suitable for comparisons with previous
works [18]. For each experimental set of the exchange en-
ergies, the external magnetic field is applied in three spe-
cific orientations: θH = 0◦, θH = 35◦ and θH = 90◦. Once
the equilibrium orientations of the each individual film,
θ1 and θ2, are found, we obtain normalized values for the
normalized magnetization component in the field direction
from

M(H)
MS

=
M1 cos (θ1 − θH) + M2 cos (θ2 − θH)

M1 + M2
. (13)

In Figure 3 we show the curves of the normalized mag-
netization versus magnetic field for the first set of ex-
change couplings. When θH = 0, at the low field region,
the magnetizations are antiparallel, due to the strong bi-
linear field, and lie on the easy axis (at 90◦ from the [110]
direction). As the field is increased, the magnetizations
symmetrically rotate toward the field direction, and the
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Fig. 3. Magnetization curves for a trilayer system, for the first
set of exchange fields, with θH = 0◦, 35◦ and 90◦.

saturation is reached at H ∼ 2.44 kOe. For θH = 35◦,
the magnetizations are only nearly antiparallel at the low
field region. However, they rotate asymmetrically as the
field is increased. This asymmetric phase prevails until
H ∼ 0.96 kOe, for which a second order phase transition
occurs and a 90◦ phase emerges. The saturation is reached
at H ∼ 2.65 kOe. When the field is applied at θH = 90◦,
as expected, the magnetizations remain antiparallel until
a first order phase transition occurs at H ∼ 0.89 kOe. A
symmetric phase emerges and prevails until the saturation
is reached at H ∼ 1.06 kOe. There are no major differ-
ences between the behavior of (100)- and (110)-trilayers
for this set of exchange energies (see [18]).

Magnetizations curves found for the second set of ex-
change fields are shown in Figure 4. For θH = 0◦, the
magnetizations are only nearly antiparallel even at the
low field region. This is because the biquadratic field is
now ∼33% of the bilinear one. As the field is increased,
the magnetizations symmetrically rotate continuously to-
ward the field direction until the saturation is reached at
H ∼ 0.78 kOe. When θH = 35◦ an interesting configura-
tion occurs. The magnetizations rotate asymmetrically to-
ward the field direction until H ∼ 0.27 kOe is reached, for
which there is a first order phase transition and both mag-
netizations stay aligned before saturation at θ1 = θ2 ∼ 80◦,
from the [110] direction. As the field increases, they rotate
together until the saturation is reached at H ∼ 2.1 kOe.
Finally, for θH = 90◦, the antiparallel phase prevails in the
low field region until H ∼ 0.15 kOe, where a first order
phase transition to the aligned phase occurs.

Figure 5 shows the numerical results of the magnetiza-
tion curves for the third set of the exchange fields which
means |Hbl| = Hbq. For θH = 0◦, as in the previous set, the
magnetizations are only nearly antiparallel at the low field
region, due to the strong relative intensity of biquadratic

Fig. 4. Same as in Figure 3 but for the second set of exchange
fields.

Fig. 5. Same as Figure 3, but for the third set of exchange
fields.

field (which is now 100% of the bilinear one). The magne-
tizations rotate symmetrically toward the field direction
until H ∼ 0.54 kOe, for which a first order phase tran-
sition occurs to an asymmetric phase. The saturation is
reached at H ∼ 0.6 kOe. For θH = 35◦, as in the previous
set of exchange fields, the magnetizations rotate continu-
ously toward the field direction until H ∼ 0.09 kOe, where
a first order phase transition occurs to a phase for which
again the magnetizations stay aligned before saturation at
θ1 = θ2 ∼ 85◦, from the [110] direction, and rotate to-
gether until the saturation is reached at H ∼ 2.5 kOe. Fi-
nally, for θH = 90◦, the antiferromagnetic phase prevails
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Fig. 6. (a) Magnetoresistance and (b) Magnetization curves
for the second set of exchange energies.

until H ∼ 0.06 kOe, when a first order phase transition
occurs to the aligned phase.

Let us take a closer look at the consequences of the
configuration obtained for θH = 35◦ in the two previous
sets of exchange energies. It has been shown that magne-
toresistance varies linearly with cos(∆θ) when electrons
form a free-electron gas, i.e., there are no barriers between
adjacent films [23]. Here, ∆θ is the angular difference be-
tween adjacent magnetizations. In metallic systems such
as Fe/Cr this angular dependence is valid. It is known from
the literature that in (100) Fe/Cr/Fe trilayers, magnetore-
sistance and magnetization curves furnish the same satu-
ration field [17,18]. However, according to our results for
the second and third sets of exchange couplings for (110)
Fe/Cr/Fe (with external field applied at θH = 35◦), mag-
netoresistance and magnetization curves furnish different
values for the saturation field. This is because the magne-
tizations get parallel before align to the magnetic applied
field, due to the (110) magneto-crystalline anisotropy. This
is well illustrated in Figure 6 for the second set of exchange
energies (a similar behavior is found for the third set). It
is very clear from the figure that the magnetoresistance
reaches saturation before magnetization. However, for the
best of our knowledge, there is so far no experimental ev-
idence to support this amazing theoretical achievement.

4 Conclusions

In summary, we have studied the effects of the magneto-
crystalline anisotropy on the magnetic properties of mag-
netic metallic trilayers Fe/Cr/Fe (110) presenting bilin-
ear and biquadratic exchanges. We consider the magnetic
components of the trilayer system as two magnetic single-
crystal films, having cubic lattice structure, separated by
a non-magnetic spacer. The calculation is based on a phe-
nomenological model which includes the following contri-
butions to the free magnetic energy: Zeeman, cubic and
uniaxial anisotropies, bilinear and biquadratic exchange
energies. We have numerically calculated the magnetiza-
tion curves, assuming three experimental sets of values
for the exchange energies, for three different orientations
of the external applied field: θH = 0◦, θH = 35◦ and
θH = 90◦, corresponding to an intermediate axis, a hard
axis and an easy axis, respectively.

Our results for a single film show that the model
employed here is a quite realistic one, reproducing very
well experimental results known from the literature [22].
Therefore, it is reasonable to extended it to the tri-
layer system. The magnetization curves for the trilay-
ers Fe/Cr/Fe (110) exhibit a rich variety of configura-
tions induced by the external magnetic field. In particular,
we point out an interesting configuration that occurs for
θH = 35◦. In this configuration, which is present for the
second and third set of exchange fields, both magnetiza-
tions stay aligned before saturation, i.e. θ1 = θ2 (∼ 80◦
in Fig. 4 and ∼ 85◦ in Fig. 5), from the [110] direction.
This is because it costs less energy for the magnetizations
stay aligned in a different direction than in the field di-
rection, once θH = 35◦ corresponds to the hard axis and
the exchange fields are weak enough. Such configuration
it is not found in trilayers Fe/Cr/Fe (100) [18], even for
weak exchange fields, being therefore a consequence of the
(110) orientation. We also have shown that this configu-
ration leads to different values of the saturation field for
magnetization and magnetoresistance curves.

The most appropriate experimental techniques to ver-
ify our numerical results are the magneto-optical Kerr ef-
fect (MOKE) and magnetoresistance, and we hope that
they may stimulate further experimental studies on these
structures.

The authors would like to thank the Brazilian Agencies CNPq,
MCT-NanoSemiMat and FINEP/CT-Infra, for partial finan-
cial support.
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